Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 237: 115503, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481868

RESUMO

Miniaturization is the trend to manufacture ever smaller devices and this process requires knowledge, experience, understanding of materials, manufacturing techniques and scaling laws. The fabrication techniques used in semiconductor industry deliver an exceptionally high yield of devices and provide a well-established platform. Today, these miniaturized devices are manufactured with high reproducibility, design flexibility, scalability and multiplexed features to be used in several applications including micro-, nano-fluidics, implantable chips, diagnostics/biosensors and neural probes. We here provide a review on the microfabricated devices used for biology driven science. We will describe the ubiquity of the use of micro-nanofabrication techniques in biology and biotechnology through the fabrication of high-aspect-ratio devices for cell sensing applications, intracellular devices, probes developed for neuroscience-neurotechnology and biosensing of the certain biomarkers. Recently, the research on micro and nanodevices for biology has been progressing rapidly. While the understanding of the unknown biological fields -such as human brain- has been requiring more research with advanced materials and devices, the development protocols of desired devices has been advancing in parallel, which finally meets with some of the requirements of biological sciences. This is a very exciting field and we aim to highlight the impact of micro-nanotechnologies that can shed light on complex biological questions and needs.


Assuntos
Técnicas Biossensoriais , Microtecnologia , Humanos , Silício , Reprodutibilidade dos Testes , Biologia
2.
Polymers (Basel) ; 13(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068282

RESUMO

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32746167

RESUMO

A series of Aurivillius phase materials, Bi5Ti 3 - 2x Fe 1 + x NbxO15 ( [Formula: see text], 0.1, 0.2, 0.3, and 0.4), was fabricated by chemical solution deposition. The effects of aliovalent substitution for the successful inclusion of Fe 3+ and Nb 5+ by replacing Ti 4+ were explored as a potential mechanism for increasing magnetic ion content within the material. The structural, optical, piezoelectric, and magnetic properties of the materials were investigated. It was found that a limit of x = 0.1 was achieved before the appearance of secondary phases as determined by the X-ray diffraction. Absorption in the visible region increased with increasing values of x corresponding to the transition from the valence band to the conduction band of the Fe- [Formula: see text] energy level. Piezoresponse force microscopy measurements demonstrated that the lateral piezoelectric response increased with increasing values of x . Magnetic measurements of Bi5Ti2.8Fe1.1Nb0.1O15 exhibited a weak ferromagnetic response at 2, 150, and 300 K of 2.2, 1.6, and 1.5 emu/cm3 with Hc of  âˆ¼ 40 , 36, and 34 Oe, respectively. The remanent magnetization MR of this sample was found to be higher than the range of reported values for the Bi5Ti3Fe1O15 parent phase. Elemental analysis of this sample by energy-dispersive X-ray analysis did not provide any evidence for the presence of iron-rich secondary phases. However, it is noted that a series of measurements at varying sample volumes and instrument resolutions is still required in order to put a defined confidence level on the Bi5Ti2.8Fe1.1Nb0.1O15 material being a single-phase multiferroic.

4.
Molecules ; 25(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256209

RESUMO

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


Assuntos
Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Eletrólitos/química , Substâncias Intercalantes/química , Eletricidade
5.
Sensors (Basel) ; 20(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113948

RESUMO

The research field of glucose biosensing has shown remarkable growth and development since the first reported enzyme electrode in 1962. Extensive research on various immobilization methods and the improvement of electron transfer efficiency between the enzyme and the electrode have led to the development of various sensing platforms that have been constantly evolving with the invention of advanced nanostructures and their nano-composites. Examples of such nanomaterials or composites include gold nanoparticles, carbon nanotubes, carbon/graphene quantum dots and chitosan hydrogel composites, all of which have been exploited due to their contributions as components of a biosensor either for improving the immobilization process or for their electrocatalytic activity towards glucose. This review aims to summarize the evolution of the biosensing aspect of these glucose sensors in terms of the various generations and recent trends based on the use of applied nanostructures for glucose detection in the presence and absence of the enzyme. We describe the history of these biosensors based on commercialized systems, improvements in the understanding of the surface science for enhanced electron transfer, the various sensing platforms developed in the presence of the nanomaterials and their performances.


Assuntos
Técnicas Biossensoriais , Glucose , Nanopartículas Metálicas , Nanotubos de Carbono , Técnicas Eletroquímicas , Glucose/análise , Ouro
6.
Analyst ; 145(2): 402-414, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31755482

RESUMO

We report the development of a dual-enzyme electrochemical biosensor based on microfabricated gold band array electrodes which were first modified by gold foam (Au-foam) in order to dramatically increase the active surface area. The resulting nanostructured Au-foam deposits then served as a highly porous 3D matrix for the electrodeposition of a nanocomposite film consisting of multi walled carbon nanotubes embedded in a chitosan matrix (CS:MWCNT) designed to provide a conducting, biocompatible and chemically versatile surface suitable for the attachment of a wide range of chemically or biologically active agents. Finally, a dual enzyme mixture of glucose oxidase (GOx) and horseradish peroxidase (HRP) was immobilised onto the CS:MWCNT nanocomposite film surface. It is shown that the resulting sensing platform developed demonstrates excellent analytical performance in terms of glucose detection with a sensitivity of 261.8 µA mM-1 cm-2 and a reproducibility standard deviation (RSD) of 3.30% as determined over 7 measurements. Furthermore, long term stability studies showed that the electrodes exhibited an effectively unchanged response to glucose detection after some 45 days. The example of glucose detection presented here illustrates the fact that the particular combination of nanostructured materials employed represents a very flexible platform for the attachment of enzymes or indeed any other bioactive agent and as such may form the basis of the fabrication of a wide range of biosensors. Finally, since the platform used is based on lithographically-deposited gold electrodes on silicon, we note that it is also very suitable for further miniaturisation, mass production and packaging- all of which would serve to reduce production costs.


Assuntos
Técnicas Biossensoriais/métodos , Quitosana/química , Enzimas Imobilizadas/química , Glucose/análise , Nanotubos de Carbono/química , Armoracia/enzimologia , Aspergillus niger/enzimologia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Glucose/química , Glucose Oxidase/química , Ouro/química , Peroxidase do Rábano Silvestre/química , Limite de Detecção , Oxirredução , Reprodutibilidade dos Testes
7.
ACS Appl Mater Interfaces ; 10(21): 17994-18004, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29737166

RESUMO

Due to the abundance of intrinsic defects in zinc oxide (ZnO), the material properties are often governed by same. Knowledge of the defect chemistry has proven to be highly important, especially in terms of the photocatalytic degradation of pollutants. Given the fact that defect-free materials or structures exhibiting only one type of defect are extremely difficult to produce, it is necessary to evaluate what influence various defects may have when present together in the material. In this study, intentionally defect-rich ZnO nanorod (NR) arrays are grown using a simple low-temperature solution-based growth technique. Upon changing the defect chemistry using rapid thermal annealing (RTA) the material properties are carefully assessed and correlated to the resulting photocatalytic properties. Special focus is put on the investigation of these properties for samples showing strong orange photoluminescence (PL). It is shown that intense orange emitting NR arrays exhibit improved dye-degradation rates under UV-light irradiation. Furthermore, strong dye-adsorption has been observed for some samples. This behavior is found to stem from a graphitic surface structure (e.g., shell) formed during RTA in vacuum. Since orange-luminescent samples also exhibit an enhancement of the dye adsorption a possible interplay and synergy of these two defects is elucidated. Additionally, evidence is presented suggesting that in annealed ZnO NRs structural defects may be responsible for the often observed PL emission at 3.31 eV. However, a clear correlation with the photocatalytic properties could not be established for these defects. Building on the specific findings presented here, this study also presents some more general guidelines which, it is suggested, should be employed when assessing the photocatalytic properties of defect-rich ZnO.

8.
Sci Rep ; 7(1): 1737, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496096

RESUMO

The five-layer Aurivillius phase Bi6TixFeyMnzO18 system is a rare example of a single-phase room temperature multiferroic material. To optimise its properties and exploit it for future memory storage applications, it is necessary to understand the origin of the room temperature magnetisation. In this work we use high resolution scanning transmission electron microscopy, EDX and EELS to discover how closely-packed Ti/Mn/Fe cations of similar atomic number are arranged, both within the perfect structure and within defect regions. Direct evidence for partitioning of the magnetic cations (Mn and Fe) to the central three of the five perovskite (PK) layers is presented, which reveals a marked preference for Mn to partition to the central layer. We infer this is most probably due to elastic strain energy considerations. The observed increase (>8%) in magnetic cation content at the central PK layers engenders up to a 90% increase in potential ferromagnetic spin alignments in the central layer and this could be significant in terms of creating pathways to the long-range room temperature magnetic order observed in this distinct and intriguing material system.

9.
Phys Chem Chem Phys ; 19(19): 12255-12268, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28451671

RESUMO

Intentionally defect-rich zinc oxide (ZnO) nanorod-arrays were grown from solution by carefully adjusting the concentration ratio of the growth-precursors used followed by various post-deposition thermal treatments. Post-deposition rapid thermal annealing (RTA) at moderate temperatures (350 °C-550 °C) and in various atmospheres was applied to vary the defect composition of the grown nanorod-arrays. It is demonstrated that, intense, defect-related orange emission occurs solely upon RTA around 450 °C and is essentially independent of the atmosphere used. Extensive materials characterization was carried out in order to evaluate the origin of the orange-luminescent defects and what influence they have on the ZnO material properties. It is concluded that the oxygen vacancy-zinc interstitial defect complex (VO-Zni) is responsible for the orange luminescence in the prepared materials. A kinetic formation mechanism of the VO-Zni complex dependent on the RTA temperature is proposed and shown to be in accordance with the experimental findings. Furthermore it is shown that this bulk deep-level defect could act as a trap state for photo-generated electrons prolonging the charge carrier lifetime of photo-generated holes and therefore improving the charge carrier separation in the material. As a result the photo-current density under simulated sunlight is found to increase by almost 150% over as-grown samples. The potential use of this defective material in applications such as solar water splitting is outlined.

10.
Langmuir ; 32(23): 5862-9, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27218474

RESUMO

We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed.

11.
Sci Rep ; 4: 5712, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25026969

RESUMO

Assertions that a new material may offer particularly advantageous properties should always be subjected to careful critical evaluation, especially when those properties can be affected by the presence of inclusions at trace level. This is particularly important for claims relating to new multiferroic compounds, which can easily be confounded by unobserved second phase magnetic inclusions. We demonstrate an original methodology for the detection, localization and quantification of second phase inclusions in thin Aurivillius type films. Additionally, we develop a dedicated statistical model and demonstrate its application to the analysis of Bi(6)Ti(2.8)Fe(1.52)Mn(0.68)O18 (B6TFMO) thin films, that makes it possible to put a high, defined confidence level (e.g. 99.5%) to the statement of 'new single phase multiferroic materials'. While our methodology has been specifically developed for magnetic inclusions, it can easily be adapted to any other material system that can be affected by low level inclusions.

12.
J Nanosci Nanotechnol ; 11(9): 8354-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097583

RESUMO

In comparison to ITO films prepared by chemical solution deposition on bare substrates, the use of a ZnO buffer layer and Al2O3 barrier layer has been shown to have a significant effect on morphology, measured sheet resistance and therefore resistivity. In the case of quartz substrates, ITO resistivity decreased from 9.6 x 10(-3) ohms cm to 4.3 x 10(-3) ohms cm on incorporation of a ZnO buffer layer and Al2O3 barrier layer, both grown by ALD. A change in surface morphology was observed, due to the presence of the buffer layer, however, the ZnO buffer layer was not found to influence the XRD pattern of the ITO films.

13.
Adv Mater ; 22(29): 3104-24, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20589747

RESUMO

The area of colloidal photonic crystal research has attracted enormous attention in recent years as a result of the potential of such materials to provide the means of fabricating new or improved photonic devices. As an area where chemistry still predominates over engineering the field is still in its infancy in terms of finding real applications being limited by ease of fabrication, reproducibility and 'quality'- for example the extent to which ordered structures may be prepared over large areas. It is our contention that the Langmuir-Blodgett assembly method when applied to colloidal particles of silica and perhaps other materials, offers a way of overcoming these issues. To this end the assembly of silica and other particles into colloidal photonic crystals using the Langmuir-Blodgett (LB) method is described and some of the numerous papers on this topic, which have been published, are reviewed. It is shown that the layer-by-layer control of photonic crystal growth afforded by the LB method allows for the fabrication of a range of novel, layered photonic crystals that may not be easily assembled using any other approach. Some of the more interesting of these structures, including so-called heterostructured photonic crystals comprising of layers of spheres having different diameters are presented and their optical properties described. Finally, we offer our comments as to future applications of this interesting technology.


Assuntos
Coloides/química , Fótons , Dióxido de Silício/química , Cristalização , Propriedades de Superfície
15.
J Colloid Interface Sci ; 333(2): 816-9, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19251265

RESUMO

This short communication reports the observation that in contrast to most previously reported procedures, it is possible to prepare 3D photonic crystal structures from silica particles that have not been deliberately treated with surfactant molecules, using the Langmuir-Blodgett method. We find that colloidal particles prepared simply via the Stöber method with diameters in the range 180-360 nm and dispersed in ethanol, may be effectively floated at the air/water interface and compressed into close packed layers prior to depositing the layers on a substrate. We also find, by comparing structures made with both particles treated with the surfactants 3-(trimethoxysilyl) propyl methacrylate or (3-aminopropyl)triethoxysilane and particles which have not been treated with any surfactant species, that the position of the Bragg peak and the reflectivity of the sample does not appear to be influenced by the presence of the surfactant molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...